\qquad
3-7 Compositions of Functions
Date \qquad A\#9

Goal: Make composite functions.

Warm Up:

1. Is the father of your mother the same as the mother of your father? Explain.
2. Is the sum of the squares of 4 and 5 the same as the square of the sum of 4 and 5 ? Show work.

Activity: Math Puzzle
a. Using numbers, write down the day \qquad and month \qquad of your birthdate
b. Double the day
c. Multiply by ten
d. Add 73
e. Multiply by 5
f. Add the number of the month \qquad
g. Subtract 365 \qquad
What do you notice about the final answer? Why will it always work?

Each step can be called a function, but if you put it all together as one function, you get the same result. This is called the \qquad
\qquad .

Definition of Composite Function

Suppose f and g are functions. The of g with f, written is the function defined by $(g \circ f)(x)=g(f(x))$.
The domain of $g \circ f$ is the set of values of x in the domain of f for which $f(x)$ is in the domain of g.

Questions	Composition and Commutative Property
	Example 1: Let f and g be defined by $f(x)=2 x^{2}+3 x$ and Evaluate. a. $(f \circ g)(-2)$

Conclusion:
Practice 1: Let f and g be defined by $f(x)=x^{2}$ and $g(x)=\frac{1}{3 x+1}$.
Evaluate.
a. $(f \circ g)(4)$
b. $(g \circ f)(4)$
c. $f(g(4))$

Example 2: Let f and g be defined by $f(x)=2 x^{2}+3 x$ and $g(x)=x-7$.
a. Derive a formula for $(f \circ g)(x)$.
b. Give a simplified formula for $(g \circ f)(x)$
c. Verify that $f \circ g \neq g \circ f$ by graphing.

Practice 2: Let f and g be defined by $f(x)=x^{2}$ and $g(x)=\frac{1}{3 x+1}$.
b. Give a simplified formula for $(g \circ f)(x)$
c. Verify that $f \circ g \neq g \circ f$ by graphing.

Finding the Domain of a Composite Function

"The domain of $g \circ f$ is the set of values of x in the domain of f for which $f(x)$ is in the domain of g. " What?

Example 3: Let f and g be defined by $f(m)=\sqrt{m}$ and $g(m)=\frac{2}{m-3}$.
Find the domain of $g \circ f$. Then find the domain of $f \circ g$.
Questions $\left.\left.\begin{array}{l}\text { Practice 3: Let } f \text { and } g \text { be defined by } f(x)=x^{2} \text { and } g(x)=\frac{1}{3 x+1} . \text { Find } \\ \text { the domain of } g \circ f . \text { Then find the domain of } f \circ g .\end{array}\right\} \begin{array}{l}\text { Composition of Transformations } \\ \text { Because transformations are functions, they can be composed and } \\ \text { they are not commutative. } \\ \text { Example 4: Let } S:(x, y) \rightarrow(2 x, y) \text { and } T:(x, y) \rightarrow(x+4, y-3) . \\ \text { a. Describe } S \text { and } T \text { in words. } \\ \text { b. Write a formula for }(T \circ S)(x, y) \text { and describe in words. } \\ \text { c. Write a formula for }(S \circ T)(x, y) \text { and describe in words. }\end{array}\right]$

[^0]
[^0]: Summary:

